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Abstract: Rainfall-triggered shallow landslides represent a major threat to people and infrastructure 
worldwide. Predicting the possibility of a landslide occurrence accurately means understanding the 
trigger mechanisms adequately. Rainfall is the main cause of slope failures in Slovenia, and rainfall 
thresholds are among the most-used tools to predict the possible occurrence of rainfall-triggered 
landslides. The recent validation of the prototype landslide early system in Slovenia highlighted the 
need to define new reliable rainfall thresholds. In this study, several empirical thresholds are 
determined using an automatic tool. The thresholds are represented by a power law curve that links 
the cumulated event rainfall (E, in mm) with the duration of the rainfall event (D, in h). By 
eliminating all subjective criteria thanks to the automated calculation, thresholds at diverse non-
exceedance probabilities are defined and validated, and the uncertainties associated with their 
parameters are estimated. Additional thresholds are also calculated for two different environmental 
classifications. The first classification is based on mean annual rainfall (MAR) with the national 
territory divided into three classes. The area with the highest MAR has the highest thresholds, which 
indicates a likely adaptation of the landscape to higher amounts of rainfall. The second classification 
is based on four lithological units. Two-thirds of the considered landslides occur in the unit of any 
type of clastic sedimentary rocks, which proves an influence of the lithology on the occurrence of 
shallow landslides. Sedimentary rocks that are prone to weathering have the lowest thresholds, 
while magmatic and metamorphic rocks have the highest thresholds. Thresholds obtained for both 
classifications are far less reliable due to the low number of empirical points and can only be used 
as indicators of rainfall conditions for each of the classes. Finally, the new national thresholds for 
Slovenia are also compared with other regional, national, and global thresholds. The thresholds can 
be used to define probabilistic schemes aiming at the operative prediction of rainfall-induced 
shallow landslides in Slovenia, in the framework of the Slovenian prototype early warning system. 
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1. Introduction 

Landslides are one of the most common hazardous natural phenomena in Slovenia and 
worldwide, threatening the safety of local residents and damaging infrastructure. The main 
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triggering factor of shallow landslides in Slovenia is rainfall, especially short and intense rainstorms, 
combined with local geological, geomorphological and climatic conditions [1]. In recent decades, 
intensive rainfall events have become much more frequent. This is also due to global climate change, 
which leads to a high number of shallow slope failures [2]. Every year dozens to hundreds of new 
shallow landslides are recorded in Slovenia. Many of them cause damage to infrastructure and 
properties, including residential buildings and agricultural land. To mitigate possible serious 
consequences and damage, the use of a landslide early warning system (LEWS) is fundamental. To 
operate a successful LEWS, it is essential to understand the relationship between rainfall and 
landslide occurrence. This relationship is commonly defined by means of empirical rainfall 
thresholds. The calculation of rainfall thresholds for landslide triggering has been a major challenge 
over the last few decades. Campbell [3] was the first to demonstrate the connection between 
antecedent rainfall and its infiltration into low-permeable rocks with the triggering of landslides. 
Nilsen and Turner [4] also proved the impact of rainstorms and antecedent rainfall on the occurrence 
of slope mass movements and calculated threshold values for the investigated area. Caine [5] 
proposed a power law equation linking mean rainfall intensity (I) and duration of the rainfall event 
(D) based on data from different geological, morphological and climatic settings. Since then many 
different methods and algorithms have been developed for calculating rainfall thresholds [6–8]. 
LEWSs based on thresholds of different types have been implemented in many countries and regions 
[9,10], e.g., for the coastal areas of San Francisco [11,12], the metropolitan areas of Rio de Janeiro 
[13,14] and Vancouver [15], southern Taiwan [16], Italy [17] and regions in Italy such as Emilia-
Romagna [18], Piedmont [19], Tuscany [20–22] and Sicily [23]. 

In Slovenia, Komac [1] calculated rainfall thresholds for individual lithological units on the 
entire Slovenian territory using the statistical chi-square method. Jemec Auflič and Komac [24] 
analyzed rainfall patterns for shallow landslides in the Škofjeloško-Cerkljansko hills during six major 
rainfall events between 1991 and 2010, while Rosi et al. [25] used the MaCumBA (MAssive 
CUMulative Brisk Analyzer) algorithm by Segoni et al. [26] to determine the first mean intensity-
duration ID thresholds on a regional scale and for four major river zones in Slovenia. Bezak et al. [27] 
determined empirical thresholds for flash floods and landslides in Slovenia using a copula-based 
method. Bezak et al. [28] also worked on the application of hydrological modelling for temporal 
prediction of shallow landslides, while Jordanova et al. [29] focused on the determination of empirical 
thresholds for shallow landslides in the Posavsko hills, Eastern Slovenia, with an analysis of 
antecedent rainfall and the intensity of seven major rainfall events between 2013 and 2017.  

With the aim of improving prevention measures, the prototype of a LEWS for Slovenia was 
developed in 2013 [30]. The system is based on the comparison between the forecasted precipitation 
for the next 24 h and rainfall thresholds, determined using the chi-square method and 40 years of 
average rainfall correlated to the lithological unit [1]. Recently, a validation of this LEWS was carried 
out [29,31] and demonstrated the need for new thresholds.  

The definition of empirical rainfall thresholds is often affected by subjective criteria, such as the 
definition of the rainfall events responsible for landslide triggering, and by uncertainties, such as the 
quality of rainfall data and the accuracy of the location and timing of landslide occurrences [32,33]. 
To avoid any subjective bias in the results, Melillo et al. [34,35] proposed an algorithm for the 
automatic calculation of thresholds for rainfall-induced landslides, which was improved and 
implemented in a software tool (CTRL-T, Calculation of Thresholds for Rainfall-induced Landslides 
Tool) [32]. The tool uses objective, standardized criteria for the automatic reconstruction of landslide-
triggering rainfall conditions, based on historical rainfall records and landslide occurrence dates. It 
was applied by several authors in diverse environments in Italy [32,36], India [37] and Bhutan [38]. 

According to the determination of the amount of rainfall responsible for the landslide 
occurrence, we propose new rainfall thresholds, calculated using CTRL-T, for the entire national 
territory of Slovenia and for climatic and geological subdivisions. The new national rainfall 
thresholds are compared with the global and regional thresholds proposed by Caine [5], Guzzetti et 
al. [6,7], Rosi et al. [24], Peruccacci et al. [39] and Palladino et al. [40]. 
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2. Study Area  

Slovenia (20,273 km2) lies in Central Europe in the southeastern part of the Alps (Figure 1). The 
sparse landscape and the diverse geological conditions range from the Pannonian plains and hills 
and their sediments in the northeast through the Alpine foothills in the Prealpine region (East to 
Western Slovenia) to the Alpine region in the northwest and the Eocene flysch in the southwestern 
Mediterranean plateau. The tectonic and structural elements, intersecting the area, have led to 
unstable rock masses and landslide-prone conditions [41].  

The rainfall is unevenly distributed over the country due to its location between the Alps, the 
Dinarides, the Pannonian Basin and the Adriatic Sea, which contributes to the Mediterranean climate 
conditions (Figure 1). According to the Slovenian Environment Agency (ARSO), the annual average 
precipitation between 1981 and 2010 shows that the western part of Slovenia (excluding the 
southwestern coastal area) and especially the northwestern Alpine region is the rainiest part [42]. The 
average annual rainfall ranges from 1600 mm to over 3200 mm in the Julian Alps. Rain clouds usually 
move north and east towards the Alps and Dinarides, which serve as an orographic barrier. Many 
deep-seated landslides and debris flows (e.g., Stože, Slano Blato, Potoška Planina) are present in the 
western and northwestern parts of Slovenia, while the east is more prone to shallow landslides. The 
less rainy area in the northeast accumulates on average almost 1000 mm per year.  

 
Figure 1. Location of Slovenia, with indication of the rain gauges used to reconstruct the rainfall 
events responsible for the failures, classified into four geographical areas related to rainfall 
characteristics, and of the landslides included in the analyzed catalogue. The landslides used for 
threshold calculations are indicated with orange dots. 

3. Methods and Data 

3.1. CTRL-T Tool and Threshold Equation 

CTRL-T is a tool for the automatic calculation of rainfall thresholds for their use in operative 
prediction of shallow landslides [32]. The calculation of thresholds is based on continuous sets of 
hourly rainfall data gathered from rain gauges, and on a landslide database, consisting of known 
locations (geographic coordinates) and times (accurate dates and, when available, hour) of landslide 
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occurrences. The tool reconstructs rainfall events and determines the events that are more likely to 
be responsible for the observed slope failures. Two important input parameters were defined prior 
to the identification of rainfall events, i.e., (i) the maximum permissible distance between the 
representative rain gauge and the landslide (15 km) and (ii) the maximum acceptable delay between 
the end of a rainfall event and the occurrence of a landslide (48 h). 

The calculations are performed by three separate segments, each of which performs specific 
tasks [32]. The first segment performs the reconstruction of the individual rainfall events from the 
continuous rainfall series and calculates the duration (D, in hours) and the cumulated rainfall (E, in 
mm) of the rainfall events. The separation of consecutive rainfall events is based on climatic and 
seasonal settings: two “no rain” time intervals are distinguished for a warm/dry and cold/rainy 
season, respectively. The determination of the two seasons is based on monthly soil–water balance 
(MSWB) model [43–45]. In more detail, the MSWB model exploits monthly rainfall and temperature 
data and allows estimating the average monthly potential and real evapotranspiration utilizing a 
water balance over the mean hydrological year. Furthermore, the aridity index (AI), i.e., the ratio 
between the average monthly rainfall and the average monthly potential evapotranspiration, is used 
to define the length of the two seasons for each of the four regions. The warm/dry season has AI < 1, 
while in the cold/rainy season AI ≥ 1. Once the length of the two seasons in each region has been 
defined, the ratio between the total amount of real evapotranspiration in the warm and the cold 
seasons is used to define the ratio between the “no rain” time intervals in each season. 

The task of the second segment is to select the nearest rain gauge for each landslide. The 
maximum allowed distance between a landslide and a rain gauge is within a circular area of a given 
radius. This task is followed by the selection of single or multiple rainfall conditions (MRC) that are 
most likely responsible for the slope failures. Each MRC is assigned a weight to select the 
representative rain gauge and the rainfall conditions associated with the landslide. The weight is 
equal to the ratio between the cumulated rainfall (E) times the mean rainfall intensity (I) divided by 
the square of the distance between the rain gauge and the landslide. 

The third segment is the calculation of cumulated event rainfall–rainfall duration—ED—
thresholds at different non-exceedance probabilities (NEPs), and the associated uncertainties, where 
the MRC with the maximum weight for each failure (MPRC, Maximum Probability Rainfall 
Condition) are selected. The thresholds are defined using a frequentist approach [46,47] and have a 
power law form linking E to D: 

𝐸𝐸 = (𝛼𝛼 ± 𝛥𝛥𝛼𝛼) ⋅ 𝐷𝐷(𝛾𝛾±𝛥𝛥𝛾𝛾) (1) 

where 𝛼𝛼 is the scaling parameter and 𝛾𝛾 is the shape parameter, i.e., the intercept and slope of the 
power law curve respectively; 𝛥𝛥𝛼𝛼 and 𝛥𝛥𝛾𝛾 represent the relative uncertainties of the two parameters 
[46,47]. A more detailed description of CTRL-T can be found in Melillo et al. [32,34,35]. 

3.2. Landslide Data 

Initially, the landslide database consisted of 2179 landslides that occurred between 18 September 
2007 and 5 May 2018. We classified all landslides in the database as shallow landslides. The failures, 
probably caused by snowmelt during the winter and the first months of spring (i.e., from early 
December to early April), were discarded. Landslides with unknown dates of occurrence or location 
and double entries (e.g., two landslides in the same place and time) were also excluded from the 
analysis. In total, we manually removed 583 landslides from the database, leaving 1596 landslides for 
further analysis. 

The exact time of the failures was not known; therefore, all landslides were recorded as they had 
occurred at the end of the day. This could introduce uncertainties in the amount of rainfall responsible 
for the landslides (see e.g., [48]), which however were not evaluated. In particular, all rainfall up to 
the end of the day of the recorded dates was considered, although the landslides probably occurred 
earlier and could have consisted of lower amounts of rainfall. 
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3.3. Rainfall Data 

In Slovenia, several different types of gauges measure precipitation data and other climatic 
variables. For this analysis, ARSO provided rainfall data of all automatic rain gauges. The measures 
were extracted with a temporal resolution of 30 minutes and aggregated in hourly time steps for the 
period between 18 September 2007 and 5 May 2018. Of the 144 available rain gauges, only 94 were 
used for the reconstruction of rainfall conditions that caused the landslides. Average monthly 
temperature data, useful for the MSWB model, was gathered from all stations. 

4. Results and Discussion 

4.1. Definition of the Dry and Wet Season 

The identification of the warm/dry and cold/rainy seasons in Slovenia was not trivial due to 
sparse landscapes and different climatic conditions. Four regions were identified: (i) North East, the 
region with less rainfall; (ii) North West, the Alpine region; (iii) South West, the coastal region with 
Mediterranean climatic conditions; and (iv) the Central region, the pre-alpine that receives the highest 
rainfall (more than 3000 mm per year). The rain gauges in each region were classified accordingly 
(Figure 1). Using the average monthly rainfall and temperature data between 2007 and 2018 and 
applying the MSWB model, the length of the two seasons in each region was defined. Furthermore, 
using the aridity index, the ratio among the “no rain” intervals in each season was determined. This 
ratio resulted equal to 2, corresponding to a “no rain” interval of 48 h (set as minimum) in the warm 
season and 96 h in the cold season, respectively. Figure 2 shows the results of the analysis for the four 
considered regions. While the North East, South West and Central regions experience dry periods 
(AI ≥ 1) in the summer months (with diverse lengths), the North West part (Alpine area) has no dry 
period. Therefore, in North East, South West and Central regions, rainfall events were reconstructed 
using a “no-rain” period of 48 h and 96-h in the warm/dry and cold/rainy season, respectively. 
Conversely, in the North West region, rainfall events were always separated by 96 h. 

 
Figure 2. Calculated aridity index for individual regions: (a) South West; (b) North West; (c) North 
East; (d) Central region. Green and red areas indicate the cold/rainy and the warm/dry months, 
respectively. 
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4.2. Threshold Calculation 

Using CTRL-T we reconstructed 1315 rainfall conditions responsible for the occurrence of 
landslides in the observed period. For 281 landslides it was not possible to determine the triggering 
rainfall event for three main reasons: (i) the distance between the landslide and the rain gauges 
exceeded 15 km (chosen according to the morphology and the rain gauge density of the study area); 
(ii) the delay between the end of the rainfall condition and the occurrence of the landslide exceeded 
48 h; (iii) accurate landslide information or rainfall data were lacking. These landslides were excluded 
from the calculation. Several landslides occurring on the same day and near the same rain gauges 
were presumably triggered by the same amount of rainfall. In this case, CTRL-T selected only the 
rainfall condition corresponding to the first triggered landslide. As a result of the analysis, out of 1315 
rainfall events, only 368 survived the selection criteria (Figures 1 and 3). 

The values of 15 km and 48 h for maximum distance and delay, respectively, were selected in 
accordance with previous works [32,33,35,38] and should be considered as conservative upper limits. 
Most of the landslides (305 out of 368, 83%) were associated with rain gauges located at a maximum 
distance of 10 km, and half of them within 6 km; in 48 cases the distance was shorter than 2 km. 
Regarding the delay between the end of the rainfall and the occurrence landslide time, the majority 
of the landslides (299 out of 368, 81%) that were associated with rainfall conditions ended within a 
delay of 24 h. Specifically, half of them had a delay of less than 10 h and in 60 cases the delay was 
null. 

Based on the 368 rainfall conditions, the algorithm included in CTRL-T calculated ED 
(cumulated event rainfall—duration) thresholds at different non-exceedance probabilities (Table 1). 
As a reference with previous works [e.g., 32–35,38,46,47], Figure 3 shows the rainfall conditions and 
the threshold at 5% NEP. According to the frequentist method [46,47], the 5% NEP threshold leaves 
5% of the empirical ED conditions below itself. The relative uncertainties of the parameters of the 
thresholds were also calculated. The 5% NEP threshold has low relative uncertainties (0.7/6.8 = 10.3%; 
0.02/0.4 = 5%), which means a better distribution of the rainfall conditions. 

    
Figure 3. (a) Log-log plot with the cumulated event rainfall—duration ED, conditions that triggered 
landslides in Slovenia and the corresponding 5% ED threshold (T5,SVN). (b) T5,SVN threshold in the range 
1 h ≤ D ≤ 120 h, in linear coordinates. The shaded areas represent the threshold uncertainty. 

  



Water 2020, 12, 1449 7 of 16 

 

Table 1. Main characteristics of rainfall thresholds defined in this study.  

Name Region Area 
(km2) 

Number 
of 

MPRC* 
Threshold equation Duration 

range (h) 
Δα/α 
(%) 

Δγ/γ 
(%) 

T5,SVN Slovenia 20,273 368 
E = (6.8 ± 0.7)∙D(0.40 ± 

0.02) 
2–1149 10.3 5.0 

T1,SVN Slovenia 20,273 368 
E = (4.7 ± 0.5)∙D(0.40 ± 

0.02) 
2–1149 10.6 5.0 

T10,SVN Slovenia 20,273 368 
E = (8.2 ± 0.8)∙D(0.40 ± 

0.02) 
2–1149 9.8 5.0 

T15,SVN Slovenia 20,273 368 
E = (8.9 ± 0.9)∙D(0.40 ± 

0.02) 
2–1149 10.1 5.0 

T20,SVN Slovenia 20,273 368 
E = (10.5 ± 1.0)∙D(0.40 ± 

0.02) 
2–1149 9.5 5.0 

T50,SVN Slovenia 20,273 368 
E = (16.5 ± 1.6)∙D(0.40 ± 

0.02) 
2–1149 9.7 5.0 

T5,L 800 ≤ MAR ≤ 1300 mm 6538 137 
E = (8.3 ± 1.1)∙D(0.34 ± 

0.04) 
2–280 13.2 11.8 

T5,M 
1300 ≤ MAR ≤ 1600 

mm 
6018 127 

E = (7.3 ± 1.1)∙D(0.38 ± 

0.04) 
2–243 15.0 10.5 

T5,H 
1600 ≤ MAR ≤ 4000 

mm 
7717 104 

E = (7.2 ± 1.6)∙D(0.41 ± 

0.05) 
5–1149 22.2 11.9 

T5,IG 
Igneous-metamorphic 

complex 
1444 48 

E = (14.8 ± 3.3)∙D(0.25 ± 

0.05) 
2–139 22.3 20.0 

T5,LD 
Limestone and 

dolomite 
8803 72 

E = (8.9 ± 2.2)∙D(0.36 ± 

0.06) 
5–180 24.7 16.7 

T5,US Unbound sediments 5601 106 
E = (5.3 ± 0.9)∙D(0.47 ± 

0.04) 
3–1149 17.0 8.5 

T5,BS 
Bound sedimentary 

rocks 
4425 142 

E = (5.9 ± 0.9)∙D(0.42 ± 

0.04) 
2–303 15.2 9.5 

* MPRC—Maximum Probability Rainfall Condition. 

4.2.1. Thresholds for Different Mean Annual Rainfall Classes 

To investigate the role of the rainfall regime for the landslide triggering conditions in Slovenia, 
we used data on mean annual rainfall (MAR) provided by ARSO [42], which were divided into three 
classes. Figure 4 shows that the eastern part of Slovenia (32% of the total national territory) is 
characterized by low values of MAR (800 ≤ MAR ≤ 1300 mm), the central part (30%) by medium 
values (1300 < MAR ≤ 1600 mm) and the western part (38%) by high values (1600 < MAR ≤ 4000 mm). 
The number of landslides in the region characterized by a low, medium and high MAR class is 137, 
127 and 104, respectively. The lowest density of landslides (one landslide every 74 km2) is found in 
the area with high MAR values, while the other two areas are characterized by a similarly higher 
value of landslide density (one every 47 km2). 
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Figure 4. Subdivision of Slovenia based on different mean annual rainfall (MAR) between 1981 and 
2010 [42] into three classes, with indication of the landslides used in the analysis. The donut chart 
shows the number of landslides in each class. 

Figure 5a shows the MPRCs classified into three MAR classes, with the corresponding 5% ED 
thresholds, T5,L, T5,M and T5,H (Table 1). The three thresholds are also shown in Figure 5b, in linear 
coordinates and in the range of duration 1 ≤ D ≤ 120 h, with the shaded areas representing the 
uncertainty associated to each threshold. Inspection of Figure 5a and Table 1 reveals that the three 
point-clouds have different distributions and the subsets have diverse duration ranges, and the 
resulting thresholds have different parameters. In particular, α increases from 7.2 to 8.3, and γ 
decreases from 0.41 to 0.34 moving from T5,H to T5,L. Therefore, the curves become higher and steeper 
with an increasing MAR (Table 1), ranging from α = 8.3 ± 1.1 and γ = 0.34 ± 0.02 for the low MAR 
region to α = 7.1 ± 1.6 and γ = 0.41 ± 0.05 for the high MAR region. This behavior is in accordance with 
the findings of Peruccacci et al. [39] in the nearby Italian territory: the rainfall required to trigger 
landslides increases with the MAR, which proves a sort of adaptation of the landscape to the average 
rainfall conditions. The relative uncertainty of α increases as the MAR class increases, while Δγ/γ 
remains stable. 

 
Figure 5. (a) Log-log plot with the ED (cumulated event rainfall—duration) conditions that triggered 
landslides in Slovenia classified according to three classes of mean annual rainfall (MAR) and 
corresponding 5% ED thresholds (T5,H, T5,M, T5,L). (b) Same thresholds and related uncertainties 
(shaded areas) in the range 1 h ≤ D ≤ 120 h, in linear coordinates. Legend: L, 800 mm ≤ MAR ≤ 1300 
mm; M, 1300 mm < MAR ≤ 1600 mm; H, 1600 mm < MAR ≤ 4000 mm. 
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4.2.2. Thresholds for Lithological Classes 

For the purpose of studying the role of lithology in the triggering of landslides in Slovenia, we 
used the Slovenian engineering geological map in scale 1:1,000,000 by Ribičič et al. [49] We have 
reclassified the 29 rock units into four classes (Figure 6): the igneous and metamorphic complex (IG 
class), limestone and dolomite (LD class), unbound sediments or sedimentary rocks (US class) and 
bound sedimentary rocks (BS class). Each class represents a unit of similar rock types that occur in 
Slovenia. The IG class includes diabase, andesites, granites and all types of volcanic sedimentary 
rocks; the LD class includes all types and forms of these occurring rocks; US class includes all the 
unconsolidated clastic sediments such as clay, marl, silt, sand, gravel and similar sediments, and the 
BS class represents all the occurring cemented fine-grained and coarse-grained clastic rocks. 

 
Figure 6. Subdivision of Slovenia into four main lithological classes based on the engineering 
geological map by Ribičič et al. [49], with indication of the landslides used in the analysis. The donut 
chart shows the number of landslides in each class. 

Figure 6 shows the landslides considered for each class, where the class IG has the lowest 
number (48 of 368), class LD with 72, class US with 106, and class BS with 142 conditions. Overall, 
67% of the considered landslides occurred in the areas of sedimentary rocks (bound and unbound), 
which take roughly half of the total territory of Slovenia (10,026 km2, 49.5%), while landslides in the 
area of limestones and dolomites (8803 km2, 43.4%) account for only 20% of the considered landslides. 
This proves the impact of lithology on landslide triggering conditions, as reported, e.g., by Jordanova 
et al. [29], Peruccacci et al. [39], Palladino et al. [40], Vennari et al. [50] and Gariano et al. [51] 
Sedimentary rocks are relatively unstable masses that are very susceptible to weathering and 
consequently accumulate thick eluvium, which is the main source of material for shallow landslides. 

Figure 7a shows the ED conditions in each lithology class in log–log coordinates with the 
corresponding 5% NEP thresholds, T5,IG, T5,LD, T5,US and T5,BS (Tab. 1). The same thresholds are shown 
in linear coordinates in Figure 7b, with the range of duration (D) varying from 1 to 120 h. Due to the 
small number of conditions for classes IG and LD, the uncertainties are too high, and the thresholds 
cannot be considered significant for these classes [39,47]. Nevertheless, they indicate the differences 
in the triggering conditions, with the IG class having the highest threshold and bound sedimentary 
rocks having the lowest. For obtaining more reliable thresholds, more empirical points are needed. 
However, a clear distinction in the minimum triggering conditions between landslides that occurred 
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in sedimentary rocks and those that occurred in dolomite, limestone, igneous and metamorphic 
complexes can be currently observed. 

 
Figure 7. (a) Log–log plot with the ED (cumulated event rainfall—duration) conditions that triggered 
landslides in Slovenia classified in four geological classes and corresponding 5% thresholds (T5,IG, 
T5,LD, T5,US, T5,BS). (b) Same thresholds and related uncertainties (shaded areas) in the range 1 h ≤ D ≤ 
120 h in linear coordinates. The thresholds with not-acceptable uncertainties are indicated with dotted 
lines. Legend: IG, Igneous and metamorphic complex; LD, Limestone and dolomite; US, Unbound 
sediments or sedimentary rocks; BS, Bound sedimentary rocks. 

4.3. Threshold Validation 

The validation of the national thresholds was based on two subsets of data: (i) a calibration set 
containing 70% of all reconstructed rainfall conditions (258), and (ii) a validation set containing the 
remaining 30% (110). The subsets were randomly selected 100 times. In addition, all those rainfall 
conditions that (presumably) did not cause landslides in the considered period were also 
reconstructed. The validation was performed 100 times, each time resulting differently; the number 
of conditions was always the same. The thresholds at different NEPs, calculated using the MRPC in 
the calibration set, are compared with the MPRC in the validation set and the rainfall conditions that 
did not trigger landslides. Therefore, 100 contingency tables were determined [33,51], reporting true 
positives (TP, i.e., landslide-triggering rainfall conditions predicted by the thresholds), false positive 
(FP, i.e., rainfall conditions not resulting in landslides incorrectly classified as landslide-triggering), 
true negatives (TN, i.e., rainfall conditions not resulting in landslides not predicted by the thresholds) 
and false negatives (FN, i.e., landslide-triggering rainfall conditions located below the threshold). 
Furthermore, three skill scores could be calculated: the true positive rate, i.e., TPR = TP/(TP + FN); the 
false positive rate, i.e., FPR = FP/(FP + TN); and the true skill statistics, i.e., TSS = TPR − FPR. Moreover, 
the FPR and TPR values were used to draw the receiver operating characteristic (ROC) curve (Figure 
8). The best prediction is achieved when TPR = 1 (all observed landslides correctly detected) and FPR = 0 
(no false positives) and is represented by the upper left green point in Figure 8 (best prediction point). 
The threshold which results closest to the best prediction point is assumed to be optimal. 

Table 2 reports the mean values of the performing indexes for calculated thresholds at different 
NEPs, for the 100 validation runs. As the non-exceedance probability increases, the number of false 
negatives rises, and that of the true positives decreases. Conversely, lowering the thresholds causes 
an increase in the number of false positives and a decrease in the number of true negatives. In such 
cases, if the thresholds are used in a LEWS, false positives lead to false alarms and false negatives 
lead to missed alarms. It can be noted that the number of false positives can be greatly overestimated 
due to a lack of landslide information, i.e., many landslides may have occurred, but were not 
recorded. Likewise, even the true negatives can be overestimated. It has been observed that even a 
slight underestimation of the number of landslide occurrences can lead to an increase in uncertainty 
about prediction (and consequently system) performance [51]. 
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Figure 8. Classification of thresholds at different non-exceeding probabilities (black points) in the 
ROC space. The threshold closest to the best prediction point (green point) is the optimal threshold. 
Horizontal and vertical bars represent the range of variation of TPR and FPR for the 100 runs in which 
the MPRCs are randomly selected. 

Table 2. Mean values of the performing indexes for calculated thresholds at different non-exceedance 
probability. The 15% threshold has the highest scoring indexes. NEP, non-exceeding probability; TP, 
true positive; FN, false negative; FP, false positive; TN, true negative; TPR, true positive rate; FPR, 
false positive rate; TSS, true skill statistics; δ, distance from perfect classification point. The optimal 
value for TPR and TSS is 1, while for FPR and δ is 0. 

NEP TP FN FP TN TPR FPR TSS δ 
1 109 1 5475 5009 0.99 0.52 0.47 0.52 
5 105 5 3761 6723 0.96 0.36 0.60 0.36 

10 98 12 2815 7669 0.89 0.27 0.63 0.29 
15 92 18 2235 8249 0.84 0.21 0.63 0.27 
20 86 23 1842 8642 0.79 0.18 0.61 0.28 
35 72 37 1062 9423 0.66 0.10 0.94 0.36 
50 57 52 590 9894 0.52 0.06 0.46 0.48 

The validation showed that the best-performing threshold is that at 15% NEP, which has the 
shortest distance δ from the best prediction point, and also the highest mean value TSS in the 100 
validation runs (Table 2; Figure 8). This threshold is represented by the equation: 

𝐸𝐸 = (8.9 ± 1.0)𝐷𝐷(0.42 ± 0.03) (2). 

The relative uncertainties of these parameters are slightly higher (Δα/α = 11.2%; Δγ/γ = 7%) than 
the ones reported in Table 1. The reason behind this is in the lower number of rainfall conditions 
available (258 out of 368).  

4.4. Comparison with Other Thresholds 

Comparing the proposed new thresholds with the existing ones, in particular with the Slovenian 
threshold calculated by Rosi et al. [25] (4 in Figure 9), a large difference in the intercept of the 
thresholds and a small difference in the slope of the functions is noticeable: the new thresholds T5,SVN, 
and T15,SVN are much lower than the previously calculated Slovenian thresholds [25]. Nevertheless, 
the thresholds defined in this work are higher than those defined for Central and Southern Europe 
(an area that includes Slovenia) by Guzzetti et al. [6] (2 in Figure 9) and lower, in particular at short 
durations, than the global thresholds by Caine [5] and Guzzetti et al. [7] (1 and 3 in Figure 9, 
respectively). In addition, these differences can be ascribed to the use of different sets of input data, 
such as the number of landslides and time period, as well as on the available rainfall data. Rosi et al. 
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[25] used landslides that occurred between 2007 and 2014 and a limited rainfall dataset (1 rain gauge per 
460 km2). On the other hand, T5,SVN was defined with the same method and has the same resolution of 
rainfall data (hourly) and the same non-exceeding probability as the thresholds for Italy [39] (5 in Figure 
9) and for the Italian Alpine area [40] (6 in Figure 9).  

 
Figure 9. Comparison between the 5% and 15% thresholds for Slovenia and other global (1 and 3), 
regional (2 and 6) and national (4 and 5) thresholds. Source, numbered chronologically: 1, global 
threshold by Caine [5]; 2, threshold for Central and Southern Europe by Guzzetti et al. [6]; 3, global 
threshold by Guzzetti et al. [7]; 4, national threshold for Slovenia by Rosi et al. [25]; 5, national 
threshold for Italy by Peruccacci et al. [39]; 6, threshold for Alps by Palladino et al. [40]. 

Interestingly, T5,SVN is very similar to the Italian threshold, while it has a slope that is different to 
the Alpine threshold. Comparing the 5% threshold defined for Slovenia with that defined with the 
same approach for Italy, some differences are observed. The Slovenian threshold has a similar slope 
and a lower intersection than the Italian one. Furthermore, the relative uncertainties for the Slovenian 
case study are higher. This is due to the lower number of empirical data points (368 compared to the 
2309 in the Italian case) and also to a different distribution of points in the ED graph. In fact, the 
percentage of MPRC with D ≤ 6 h is 5.4% in the Slovenian case and 12% in the Italian case. This is due 
to the coarser (daily vs. hourly) temporal resolution of the landslide data in Slovenia. 

The difference between the new Slovenian thresholds and the threshold for the Alpine chain can 
be ascribed at the same cause. One could have expected that the Slovenian threshold would be similar 
to the Alpine one, given the similar environment and latitude. However, this difference is again 
related to the diverse temporal resolution of the two landslide catalogs: daily for Slovenia and hourly 
for the Alps. Working with daily information for landslides can result in missing several very short 
(< 6 hours) rainfall events that can drive the slope of the threshold. 

5. Conclusions 

In this paper, new ED thresholds for Slovenia were calculated using the automatic tool proposed 
by Melillo et al. [32] The main objective was to reconstruct the cumulated event rainfall and the 
duration of the rainfall conditions responsible for landslide occurrences in order to obtain reliable 
thresholds that could be implemented in a LEWS. Based on the presented results the following 
conclusions can be drawn. 

The proposed ED thresholds were determined for the entire Slovenian territory, given that the 
current national landslide prediction system provides alerts at a national scale. Compared to other 
thresholds obtained with empirical approaches, the current curves are slightly lower. It should be 
noted, however, that the threshold used for the comparison is at 5% NEP. The main strength of the 
frequentist approach lies in the possibility of calculating thresholds at different non-exceeding 
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probabilities, which could be used in probabilistic schemes to produce rising alert levels for landslide 
occurrence [17].  

Thresholds for different MAR classes were also calculated. Due to the high relative uncertainties 
of the threshold parameters, not all the calculated thresholds can currently be implemented in a 
LEWS. However, they provide an idea of the landslide triggering conditions in the study area. The 
higher the mean annual rainfall in an area, the more rainfall is needed to trigger a landslide. 

Thresholds for different geological classes were also determined. Due to the high relative 
uncertainties, not all the defined thresholds are reliable enough to be implemented in a LEWS. They 
can be considered only as an indicator of the rainfall conditions responsible for landslide occurrences 
in different lithological units. The sedimentary rocks are more subject to weathering and thus have 
the lowest thresholds and are by far more susceptible to landslide occurrences than those areas with 
limestone and magmatic bedrocks. 

The main advantages of the tool—whose code is freely downloadable at 
http://geomorphology.irpi.cnr.it/tools/rainfall-events-and-landslidesthresholds/ctrl-algorithm/ctrl-
code/CTRL_code.R—are (i) the fast processing of a large amount of data, which provides results in a 
short time, (ii) the reduction of subjectivity in the whole process of reconstructing rainfall conditions 
responsible for the failures and (iii) the definition and validation of rainfall thresholds.  

The proposed 15% NEP threshold might be further tested using the national prototype LEWS 
and critically assessed on the basis of case studies, reviewing the landslide database and ensuring 
accurate information on the location and the occurrence date/time of the landslide. 
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